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Motivated by a problem in turbine blade cooling, we consider suction from an 
inviscid channel flow into a slot in the channel wall. The flow is assumed to separate 
smoothly from the leading edge of the slot and the pressure in the stagnant separated 
region controls the suction. The mass flux into the slot is found in terms of the 
pressure; for small values of this flux the predicted flow pattern is found to be quite 
different from that which would result if there were no separated region. In  
particular, the stagnation point never penetrates more than approximately 0.05 slot 
widths into the slot. 

1. Introduction 
We consider the flow that is set up when fluid is extracted from a crossflow into 

a slot. The practical motivation for the study arises from the analysis of the film 
cooling of gas turbine blades. I n  this process cool air is sucked from a channel inside 
the blade, through a slot or hole and emitted at the blade surface, where it forms an 
insulating layer protecting the blade from the hot gases inside the turbine. This 
permits higher turbine entry temperatures and leads to increased turbine power and 
efficiency of operation. An important parameter in this process is the mass flow of 
cool air out of the slot, as this influences the effectiveness of the insulation. It is also 
important to understand the behaviour of the fluid flow in the channel and slot in 
order to carry out boundary-layer heat transfer calculations to determine the 
thermal behaviour of the turbine blade. In  this paper we consider a simple inviscid 
model for the two-dimensional flow in a channel of infinite length with a slot of 
infinite depth perpendicular to  the channel. Our primary interest is the case of weak 
suction and we demonstrate that a linearized theory is appropriate under such 
conditions. The complementary problem of the injection of fluid from a slot into a 
crossflow has been considered by Fitt, Ockendon &, Jones (1985), and Morland (1986), 
also in the context of film cooling. 

With reference to figure 1, we consider the following problem. An ideal 
incompressible irrotational fluid flows along an infinitely long channel of width H ,  to  
which there is attached an infinitely deep slot of width L. Fluid is drawn into the slot 
where the static pressure is held lower than that in the channel. Under these 
conditions our preliminary experimentst suggest that the pressure along the 
upstream wall of the slot is constant; our model is thus one of a free shear layer 

f an the injection problem, flow visualization was performed by injecting hot gas into the wind 
tunnel and monitoring its progress with heat-sensitive liquid crystals on the tunnel walls. This 
technique revealed the flow of the injected fluid and the sharpness of the free shear layer. Similar 
information would be valuable for the suction problem but it would involve heating the tunnel 
flow. For this reason a different experimental procedure has been devised, and it is hoped to publish 
a description, together with experimental results, in a subsequent paper. 
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FIGURE 1. Geometry of idealized slot-suction problem 

separating from the leading corner of the slot and dividing a region of stagnant fluid 
from the flow in the slot. We assume as a Kutta condition that this free shear layer 
separates smoothly from the leading corner so that the velocity there remains finite. 
The flow is also assumed to be uniform in the far field in both the channel and the 
separated region. 

If the upstream static pressure is denoted by 13% and the static pressure in the 
stagnant zone of the slot by p,*, with p: > p,*, the fluid speed along the free shear 
layer U,* is given by Bernoulli's equation as 

u,*z = u:z + (p: -p,*)/ip, 

where U*, is the upstream velocity and p the fluid density. We note that in the 
context of our experiments and film cooling, it is the pressure difference p z  -p,* that 
can be controlled most conveniently. Non-dimensionalizing distance with respect to 
L,  velocity with respect to the upstream channel speed U: and pressure with respect 
to $P,2, we obtain the following free boundary problem for the stream function 
$(x, y) and free shear layer y = S(x) ; 

V $ = O  in 52, ( l . l a )  

$ = 0 on y = 0 , x  < 0 and y = S(x),O Q x < x*, 
( l . l b )  

$ = m  on x = l , y < O  and y = O , x > l ,  ( l . l c )  

$ = h  on y = h , - c o < x < c o ,  ( l . l d )  

lV$l = c on y = S(x),O < x < x*, ( l . l e )  

$+y as x + - c o , O Q y < h ,  (1.1f ) 

$ + m + ( l - m / h ) y  as x+co,O Q y Q h, (1.19) 

X(0) = S ( 0 )  = 0, S(x)+ --oo as x?z* < 1, ( l .1h)  

where Q = { - c c  < x <  m , O < y < h ) U ( S ( x )  < y < O ;  O < I <  11, 
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iL = H / L  is the non-dimensional channel width, c the non-dimensional speed of the 
fluid at the shear layer and m denotes the mass flow rate into the slot. The value of 
x* is determined by x* = 1 -m/c, by mass conservation. For notational convenience, 
we take S(x)  = - co for x* < x < 1.  Unless the separating streamline attaches a t  the 
trailing corner of the slot, the flow will have infinite velocity a t  that corner. 

In terms of the non-dimensional parameter 

c2 may be written as c2 = 1 + € 2 .  

Since e2 measures the strength of suction, it is clear that high suction results in high 
shear-layer speed c 9 1, while small suction gives c - 1.  In view of the ability to 
control p z  -p,*, we regard c as our independent variable and m, the mass flow, as a 
dependent variable. 

The free boundary problem (1.1) is amenable to standard complex variable 
techniques. In  the absence of a crossflow in the channel there is a well-known 
symmetric solution with free boundaries separating smoothly from each corner 
(Michell 1890 ; Milne-Thomson 1968 ; Birkhoff & Zarantonello 1957). The presence of 
the crossflow, however, eliminates the possibility of such a symmetric solution. In 
other related work, Watson (1946) considers the behaviour of jets issuing from a 
stepped aperture into free space, rather than into a slot, showing that for the plane 
aperture with crossflow, the jet formed is at an acute angle to the crossflow. This 
suggest,s the further consequence that, not only is the flow in the slot asymmetric, 
but that smooth separation from both the leading and trailing corners is only 
compatible with two separated regions extending infinitely far into the slot when the 
slot is a t  an acute angle calculated by Michell (1890) as a function of c. For slots 
inclined a t  other angles, either upstream or downstream, we can either postulate just 
one separated region (as in this paper) or we must allow the stream flowing into the 
slot to reattach to the appropriate slot wall a t  some finite distance. 

When separated regions are ignored, the problem reduces to that of flow in a 
branched canal one aspect of which has been considered in Milne-Thomson (1968). 

If the suction strength is small, a linearized analysis of (1.1) is possible. We assume 
in $ 2  that the flow in the channel is a parallel flow perturbed by the suction, and seek 
an expansion in the parameter 2. The theory is valid except in the neighbourhood 
of the trailing corner and the stagnation point, and we assume that the stagnation 
point lies in an O ( 2 )  neighbourhood of the trailing corner. In $3 we shall show that 
the separating streamline can only attach a t  the trailing corner for a unique pair 
c = c* and m = m* (assuming h fixed) and we shall obtain these values analytically 
for an open channel (h  = oc)) and numerically for a closed channel ( h  < co). In  $4 we 
consider the behaviour of the stagnation point and mass flow in the case c < c * ,  with 
particular emphasis on the limit c+ 1 and the open channel. The main result of this 
analysis is that the stagnation point is shown to have non-monotone dependence on 
c,  moving down the rear slot wall as c falls below c*,  then back up towards the trailing 
corner as c + 1. The asymptotic behaviours of the mass flow and free shear layer agree 
with those predicted by the linearized theory, and it is shown that the stagnation 
point does indeed lie within an O ( 2 )  neighbourhood of the trailing corner. The non- 
monotone behaviour of the stagnation point is due to the shear layer, and should be 
contrasted with the corresponding problem without separation, where the stagnation 
point moves monotonically and indefinitely down the rear slot wall as the slot mass 
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flow tends to zero. In  $5 we consider the strong suction case c > c*. Since the details 
of the calculations are essentially identical to those of $4, only the results are 
noted. 

2. Linearized theory 
In  the small suction limit, the parameter c2 given by (1.2) and the mass flow into 

the slot, m, will be small. Under these circumstances it is apparent that the effect of 
the slot suction will be an O(2)  perturbation to a uniform parallel flow in the channel, 
except in an O ( 2 )  neighbourhood of the trailing corner and stagnation point. I n  
developing the linearized model, i t  is convenient to work in terms of the velocity 
potential @(x, y )  of the channel flow. We do not attempt to match the channel flow 
to the slot flow as this involves an analysis of the flow in the neighbourhood of the 
stagnation point and a considerable loss of simplicity. Since the linearized model will 
be shown to predict correctly the asymptotic mass flow into the slot, it also correctly 
implies that the far-field slot flow is a uniform jet of width O(e2) moving parallel to 
the rear slot wall a t  speed c x 1 ++z2. Assuming the effects of the slot suction result 
in O(2)  perturbations to the otherwise parallel channel flow we write 

where ~ ( x ,  y) denotes the perturbation potential. Linearizing the Bernoulli equation 
gives 

p = p m - 2 2 9 + 0 ( e 4 )  ax (2.2) 

for the non-dimensional pressure p ,  where p ,  denotes the non-dimensional upstream 
channel static pressure. 

Along the free shear layer we have no normal flow and constant prescribed velocity 
c = 1 +g2+O(e4). Together with (2.1) these conditions imply that, in the region of 
validity of (2.1), the displacement of the shear layer from the plane y = 0 is O(e2) .  
Writing the shear layer as 

y = € 2 4 ( X ) + 0 ( € 4 ) ,  0 < x < 1, (2.3) 

the linearized condition of tangential flow along the shear layer gives 

+ 
aY 

Si(x)  = - ( x , 0 ) + 0 ( 2 ) ,  0 < x < 1, 

while continuity of pressure or, equivalently, prescription of fluid speed on the shear 
layer linearizes to give 

(2.5) 
,(x,0,=+, + O < x < l .  

The perturbation potential q~ must satisfy Laplace’s equation in the channel, and it 
must. behave as a sink in the far field. Furthermore, +lay must vanish on all rigid 
boundaries of the channel, and (+lay) (x, 0) must be continuous and zero a t  x = 0 in 
order that the shear layer separate smoothly. 
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For a channel of finite width h, 

V 2 v = 0  in O < y < h , - c o < x < o o ,  

$ ( ~ , o ) = o  on x < o , x >  I ,  
a Y  
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% -(x,O) = f, 0 < x < 1, ax 
and as x + - 00 we require 

lim -(x,y)=O, ap, O < y d h ;  
x+-, ax 

(?kp/az) (GO,  y) is a finite constant to be determined by mass conservation. Applying 
the mapping 6 = we obtain the least singular solution 

The pressure along the channel wall, y = 0, may be calculated from (2.2) and (2.6) 
and is 

x < o , x >  1 ;  (2.7) p = p ,  - €2 en/2h 

the mass flow into the slot is found to be 

In the limit h -f 
that 

we require that p, = O(1ogr) as r = (x2+ y2)i+ 00, and we find 

m = +m2, ( 2 . 9 ~ )  

S, = a[(x(~-x))t-sin-~x~].  (2.9b) 

3. Stagnation point at the trailing corner 
In the linearized theory of the previous section, it is assumed that the stagnation 

point lies within an O(e2) neighbourhood of the trailing corner. In this and the 
following two sections we examine the dependence of the stagnation point and mass 
flow m on the speed c. For fixed channel width h,  it will become apparent that only 
for a unique value c = c* will the dividing streamline attach a t  the trailing corner. 
The analysis is much easier in this case and will be presented in this section ; i t  will 
be subsequently generalized to the cases c < c* and c > c*, corresponding to weaker 
and stronger suction respectively. 

When the stagnation point is a t  the trailing corner, the situation is described by 
problem (1.1) with the extra condition that IVcpl = 0 a t  x = 1, y = 0. It is shown in 
figure 2(a),  and in figures 2(b), 2(c), 2 ( d )  we show the potential (w)-plane, hodograph 
(&)-plane and the upper half-plane used to connect them (c-plane) ; here 

dw 
dz Q = log- = logq-ie, z = x+iy, w = cp+i$. 
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Applying a Schwarz-Christoffel mapping to transform the upper half of the [-plane 
into the region occupied by the fluid in the w-plane we obtain 

where u, 7 are as indicated, while mapping the upper half-f;-plane into the relevant 
region of the Q-plane we find 

Q = slog ( -f;+(f;'- 1);) +loge, (3.2) 

or ( = -  C O S ~  2(Q - log c). (3.3) 

The logarithms and square roots are principal valued and (e - 1): - y as f;+ 00. The 
parameters 01 and 3 are related to the physical parameters c, h and m by 

where 

(3.4a, b )  

(3.51 

To determine u and 7 (and hence, for fixed h, both c and m) we have the condition 
that the slot width be unity. Since 

dw dc 
dx = e-Q --dQ 

df; dQ 

- 2m - --(l+u)(1+7) 
7c 

e-& sinh 2( Q - log c )  dQ 
X 
(a- C O S ~  2(Q-l0g~)) (3- C O S ~ ~ ( & - ~ O ~ C ) )  (1 + C O S ~  2(Q-l0g~)) ' 

this condition becomes 

- 2m 
7c 

eiQ sinh 2(Q - log c) dQ 
X 
(a- C O S ~  2(&-10g c)) (7 - C O S ~  2(Q- log c)) (1 + C O S ~  2(&-10g c)) ' 

where the path of integration lies inside the region of the Q-plane indicated in figure 
2(c). Noting that B = logc, DL = - 00 ++xi and putting w = e(Q-logC) we find that 

8m wyw2-  1) 
1 =-(1++)(1+7) do, (3.6) 

XC 

where the path of integration lies in the upper half-w-plane and to the right of 
Rew = 0. The integral may be evaluated explicitly and shown to have imaginary 
component 

and real component 

C2 k2 
(2 + 1) (k2 + 1) [ k(1 +c2) log (=) l + k  -41 + k 2 )  log (-)]}a c + l  

2( 1 + 2 ) 2  (l+k2)2 { 7c + (c2 - k2) ( k Z C 2  - 1 ) c-1 
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h e* m* 

co 
100 
10 
5 
1 
0.5 
0.2 
0.1 

1.7321 
1.7266 
1.6788 
1 A280 
1.3130 
1.1109 
1.0017 
1 .om0 

0.6282 
0.6262 
0.6084 
0.5885 
0.4412 
0.3094 
0.1406 
0.0704 

TABLE 1 .  Values of c* and m* necessary for separating streamline to attach a t  trailing edge, as 
functions of channel width h 

For a channel of finite width (k < l /c)  the condition that (3.7) vanish is 

c3 

(1 + c2)2 

- k 
(1 + k 2 y  (3.9) 

For c = ~ ' 3 ,  (3.9) has the unique solution k = 1/2/3; otherwise (3.9) has two 
solutions, k = l / c  and k = l/c, where c1 + c satisfies ci/( 1 +c:)~ = c3/(l + c ~ ) ~ .  Since 
for c increases monotonically from zero until c = 2/3, then decreases 
monotonically to zero as c+  CO, c1 exists and is unique. It follows that it is possible 
to solve (3.9) subject to the physically necessary condition k < l / c  only if c < 4 3 .  If 
c < 2/3, there exists a unique k satisfying (3.9) and k Q l /c.  Thus (3.6) becomes 

0, c3/( 1 + 

l + k  c + l  
1 = -  m{ x+ ( c 2 + 1 ) ( k 2 + 1 )  [ ( 1 + c2 ) k log (-) - c ( 1 + E 2 )  log (-)I} c-1 , (3.10) 

xc (c2-P)(c2k2-1) 1 - k  

uniquely determining m. With 1 < c < 2/3 given, and with k and m determined by 
(3.9) and (3.10), h follows from (3.5). Conversely, fixing h, then c, k, m are uniquely 
determined by (3.5), (3.9) and (3.10), implying that with h fixed there are unique 
vaues of c and m such that the stagnation point lies on the trailing corner. In  table 
1 we list these values as functions of h, obtained by solving (3.5), (3.9) and (3.10) 
numerically. 

Results for the open channel follow by letting h approach infinity. In  this limit 
q- ta  and k - t  l / c ,  reducing (3.6) to 

(z :) ++xic rz)}, c2+1 1+c2 
=- n+ 2 +-log ~ 

7cC "( (c -1) 2c 
(3.11) 

where again the path of integration has been taken in the upper-right quadrant of the 
w-plane. In  order that the imaginary component vanish in (3.11) we require 

c* = 3 = c*2 (3.12) 

and (3.13) 

say. These results also follow from (3.5), (3.7) and (3.8) by letting h+ 00 and a+q. 
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If we now assume that c - 1 +$? for small e > 0, then as M. B. Glauert (1987, 
private communication) has observed, we find that to leading order (3.1 1 )  reduces 
to 

m x ixe4 + O(e6)  

but the neglected higher-order terms have non-zero imaginary parts. The 
interpretation of this is that the leading and trailing edges must no longer be level, 
differing by a height of O(e2). The observation does, however, suggest that a t  small 
suction strength the stagnation point lies in a small neighbourhood of the trailing 
corner. As we demonstrate in the following section, this result is qualitatively 
correct, but predicts an incorrect asymptotic relationship between c and m (see 
(4.15)), namely that m = O ( ( c 2 -  1)2). 

4. The case c < c* 
As the upstream channel static pressure and the static pressure in the stagnant 

region of the slot are independent, it is possible to vary the fluid speed on the free 
shear layer, c .  In particular, it is possible for c to assume values other than c*, in 
which case the stagnation point will not lie on the trailing slot corner. For very strong 
suction (i.e. m+h), most of the fluid is drawn into the slot and we expect the 
stagnation point to lie far along the downstream channel wall, with fluid being drawn 
back into the slot. In the limit m = h the stagnation point must be a t  x = co. If this 
were not so, the dividing streamline would separate a stagnant downstream channel 
region, where 4 would be constant, from a mobile upstream region, where 4 would 
vary. Such a situation is inconsistent with 4 being harmonic in the whole channel. 
For weak suction (m + 0, c -+ 1) the behaviour of the stagnation point is less obvious. 
In  both cases, however, the fluid speed at the trailing slot corner will be infinite 
according to this model. 

In order to analyse either case, a hodograph plane more general than that used in 
4 3 is necessary. Specifically, in order to align the trailing and leading slot corners an 
additional parameter in the mapping is necessary. This parameter can only be 
introduced if there is a local minimum in fluid speed distinct, in general, from the 
stagnation point. Such a point of minimum speed must occur on the slot or channel 
walls and the only consistent configuration is for it to lie along the downstream 
channel wall when the stagnation point is on the rear slot wall and vice versa. 

I n  figure 3 we show the physical (z ) ,  potential (w) and hodograph (Q)  planes 
corresponding to the case in which the stagnation point, S, lies along the rear slot 
wall. This corresponds to the relatively weak suction case c < c* and will be treated 
in more detail than the strong suction case c > c*,  the results for the latter case being 
summarized in the following section. 

When c < c* the point of local speed minimum is located along the downstream 
channel wall, and is denoted by T in figure 3. The z-,  w- and &-planes are connected 
by the c-plane shown in figure 3 ( d ) .  We find that 
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(a) z-plane y ? = h  
y = h  

A 5  E5 

q = l  
m q =  1-- 
h 

(b) w-plane 

x = o l  \ I x =  1 
\ -  

y = o  

(c) Q-plane 
- it3 t i  
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0 logc 
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D T E" A"" 
b ReZ 

0 7 Y A 

FIGURE 3. Complex planes for the case c < c * .  
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where the mapping parameters a, y are related to the physical parameters c, h, m and 
to t by 

, ( 4 . 1 ~ )  
(a- 1); [(a(s+ l))$+ (s(a+ 1))$]2 

C =  
(2.1; + (a  + 1 ); a-5 

7-8 (2y)f+ (y + 1); 
[(y(s+ l ) ) l + ( s ( y +  1))1]2 (7-1); ’ 

k =  (4.1 b )  

(4.1 c) 

with k given by (3.5). The slot width condition is 

d5 (4.2) 

where the path of integration lies in the upper half of the [-plane. The position of the 
stagnation point, z,, is then determined from 

(4.3) 

with the path of integration along the real axis. The parameters a, y and 5 and m are 
determined as functions of c and h by (4.1 a, b ) ,  (4.2) and (3.5). It is interesting to note 
that since It1 > 1, as is clear from figure 3, it follows that 3 < s < 1, so that the image 
of the stagnation point is bounded away from the image of the slot base C, in the [- 
plane. 

To proceed further analytically, we put 

cosh2 Z ‘= 2-c0sh2Z’ 

which maps the upper half-[-plane into the semi-infinite rectangle shown in figure 
3(e), and put 

cosh2 h cosh2 p cosh2 7 cos2 f.T 
2-cosh2h’ 2-cosh2p’ 2 - cosh2 7 ’ 2 - cos= a 

c L =  t =  S =  . (4.4) 

Equations (4.1) then become 
sinh A cosh h + cos a 

C =  
coshh+lcoshA-cosa’ 

cos cr(2 - COB a) 

2cosf.T-1 . cosh2r = 

(4.5a) 

(4.5b) 

(4.5c) 

Inspection of figure 3 shows that 0 < 7 < p, p < h (unless 
p = A )  and 0 < a < in. A consequence of 7 

result equivalent to 3 < 5 < 1. 

= a, in which case 
0 and ( 4 . 5 ~ )  is that 0 < a < in, a 

The slot width integral (4.2) becomes 

2m cosh2 A cosh2 p 
KC cos2 f.T 

(4.6) 
(coshZ- l ) ( c o s h Z + ~ ~ ~ ( ~ ) ’ d Z  

oo cash Z (  Cosh2 Z - cosh2 A)  (Cosh2 Z - Cosh2 p) 
I = - -  
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with the path of integration lying inside the rectangle in figure 3 ( e ) .  The location of 
the stagnant point is then determined by 

(COS y- 1) (COS y + cos a)' dy 
14.7 ) 

2mi cosh' h cosh' y 
2, = l+-  

7CC COS' cr 1 cos y(cosh2 h- cos2 y) (cosh'p- cos2 y) ' 

where y is real. 

The real and imaginary components of (4.6) give, respectively, the equations 
Both integrals (4.6) and (4.7) may be evaluated in terms of elementary functions. 

where [sinh2 A + (1 - cos a)*], f(h, 4 = ~ 

2 A  
sinh 2h 

( 4 . 8 ~ )  

(4.8b) 

(4.9u) 

(4.9b) 

From (4.7) we find that 

where 

F(A4 = ( I + =  'OS " )' tanh 

By graphical considerations similar to those of $3, it can be established that once 
h and cr are specified there is a unique p satisfying (4.8b) and such that 0 < p < A, 
provided that cosa 2 $ and coshh > (coscr+(17cos2a-8coscr)~)/2(2cosa-l). 
Once A, p and cr are determined and satisfy (4.8b), c, h, m and z, may be found from 
(4.5a,b), (3.5), ( 4 . 8 ~ )  and (4.10). 

In table 2 we list values of c, m, z,, A, p, cr obtained numerically for two fixed values 
of the channel width; h = 1 and h = 10. The table shows that as c and m decrease 
from c* and m*, the stagnation point initially moves away from the trailing corner 
and down the rear slot wall. As c and m decrease further, however, the stagnation 
point turns round and moves back up the slot wall. In  the limit c + 1, m + 0, table 2 
suggests that the stagnation point returns to the trailing slot corner. This behaviour 
should be contrasted with the behaviour of the stagnation point in the absence of the 
shear layer ; in that case the stagnation point moves monotonically down the rear 
slot wall as m + 0. 

To illustrate this point analytically, and to justify the linearized theory of $ 2 ,  we 
consider, for simplicity, an open channel. In  this case h = co and y = A, making 
( 4 . 5 ~ )  and (4.5b) equivalent. The transcendental equations for the slot width and 
stagnation-point position can be obtained by either putting y = h in (4.6) and (4.7) 
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c m 

1.3130 0.4412 
1.0803 0.1527 
1.0241 0.0578 
1.0025 0.0078 
1.0008 0.0028 
1.0003 0.0010 

1.6788 0.6084 
1.3947 0.3794 
1.1685 0.1825 
1.0575 0.0717 
1.0087 0.0128 
1.0003 0.0004 

TABLE 2. Values of m and (zs 

h = l  

(% - 1 )/i n P 0- 

0 2.0 0.9089 0 
-0.0448 2.5 1.2041 0.7409 
-0.0445 3.0 1.5691 0.9013 
-0.0114 4.0 2.4581 1.0076 
-0.0046 4.5 2.9433 1.0253 
-0.0018 5.0 3.4366 1.0347 

h =  10 

0 1.3728 1.2639 0 
-0.0196 1.4916 1.3753 0.5000 
- 0.0532 1.7301 1.6016 0.7500 
-0.0536 2.1039 1.9626 0.9000 
-0.0177 2.8872 2.7343 1 .ow0 
-0.0008 4.5264 4.3696 1.0400 

- l)/i for c < c* for two finite channel widths A = I ,  10 

c 

1.7321 
1.5000 
1.2500 
1.1547 
1.1000 
1.0100 
1.0010 
1.0001 

m 

0.6282 
0.4489 
0.2458 
0.1622 
0.1109 
0.0137 
0.0015 
0.0002 

(% - 1 )/i 
0 

-0.0158 
-0.0416 
-0.0460 
-0.0431 
-0.0105 
- 0.0013 
-0.0001 

n 
1.3170 
1.3935 
1.5666 
1.7100 
1.8548 
2.7772 
3.8435 
4.9657 

U 

0 
0.4198 
0.6739 
0.7783 
0.8457 
0.9981 
1.0334 
1.0430 

TABLE 3. Values of m and (zs-  l)/i for c < c* for an infinite channel 

or by taking the limit p + h  in (4.8) and (4.10). In  either case, the expression ( 4 . 5 ~ )  
for c and the conditions for a level unit slot become, after simplification, 

(cosh h - 1 )  sinh h 
sinh2 h - cosh h 

C =  ' (4.12 a)  

~ + 4 c o s h ~ h - 4 ~ 0 s h h - 6 +  +?}, (4.12b) 
RC coshh-1 c 

eosh2 h 
2 sinh2 h - cosh h 

coscr = (4.12 c )  

The position of the stagnation point is then given by 

1 
sinh-'(tan cr) + - cos-'(t+ sech A )  + - 

C 

(4.13) 

while r is given by (4 .5~ ) .  In  table 3 we present values of c, m and z,, and h and g, 
calculated from (4.12) and (4.13) and plot m and (zs- l ) / i  against c -  1 in figure 4. 
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C- 1 

C- 1 

FIGURE 4. Mass flow, m, and stagnation point (zs-  l ) / i  as functions of c- 1 for the open 
channel with c < c*. 

Inspection of (4.126) shows that the limit m+O can be achieved if either 
cosh h + co or cosh h + 1. The latter case can be excluded as (4 .5a)  then implies c < 1 
as h + 0. Thus, we put 

coshh = 1 / ~  (4.14) 

and let s+O. From ( 4 . 1 2 ~ )  we find 

and from (4 .12a,  b )  and (4.13) 
COSU * ++& 

c - 1+gE2, m - @e2, (4 .15a,  b)  

z, - 1-$z2i[log(2+d3)+$7c-$2/3]. ( 4 . 1 5 ~ )  

Equation (4 .156)  agrees with (2.9a), and the fact that the stagnation point is within 
an O ( 2 )  neighbourhood of the trailing corner is consistent with the linearized theory 

We note that, for the open channel, the free shear layer may be written 
of $ 2 .  

parametrically as 2 ~ 0 4 ~ ~  [ (i sinhX- 1) (cos CT + i sinhX)2 dX 
sinhX(sinh2X+ cosh2 ' 

z ( r )  = ~ _ _ _  (4.16) 

where X is real and r varies from 00 to zero as x(r) moves from the leading slot edge 
down to the slot bottom. Applying the slot width condition (4.6) and changing 
variables to 8 and 8, where coshX = sinh hcot 0 and coshr = sinhhcot t9 (so 
0 < 8 < tan-l(sinh A ) ) ,  (4.16) yields 

(h- cosh-l(cosh h cos 0)) 

(coshh-1)sinhh(tanhh-cosB(cos2t9-sech2A)~) 

-2m{ a log (sinhh+tanB) +-- e Cosh2 A - 2 
sinhh- tan0 c (cosh h- 1)  sinhh Y ( @  = 7 
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where z(8) = z(e)+iy(O). As 8+0, near the leading corner, we find 
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m 
z - - ( 2  sinh h - coth h)282, 

X C  

- 2 m  cosh h + 2 
( 2  sinh h - coth A) 03, Y " 3 X c  sinh2 h 

while as O+tan-'(sinhh), a t  the bottom of the slot, we have 

m 
X + l - - - ,  

C 
y+ -a3 

as we would expect. In the small-mass-flow limit, as E + O ,  we find 

z = sin28+O(e), y = &2(sinOcos8-O)+O(~3), (4.18) 

although the limit is only uniform for 8 bounded away from tan-'(sinhh). Clearly 
(4.18) and (2 .9b )  are equivalent. 

5. The case c > c* 

Finally we briefly consider the strong-suction case, where the stagnation point lies 
along the downstream channel wall. The physical, potential, hodograph, c- and Z -  
planes are shown in figure 5 .  The position of the local speed minimum is denoted by 
T. The relations connecting the physical, potential, hodograph and g-planes are 
identical to those given in $4, and (4.1)-(4.3) remain valid. The only distinction 
between the two cases is that for weak suction 0 < s < 1 and It1 > 1 while for 
strong suction 0 < t < 1 and Is1 > 1 (see figure 5 ) .  In terms of 2, related to 5 by 
6 = cosh2 2 / ( 2  - cosh2 Z ) ,  we find that 

and 

sinh h cosh h + cosh a 
C =  

coshh+ 1 cash h-cash a' 
( 5 . 1 ~ )  

(5.1 b)  

(5.2) 

The conditions for a unit width, level slot become 

where [sinh2h+ (cosha-1)2], 
2 h  

sinh 2h 
j (h ,a)  = ~ 

(5 .3b)  

(5.4u) 

(5.4b) 
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(a) z-pIane q = n  
y = h  

q = l  

A m  

$ 4  * = h  
(b) w-plane 

(c) Q-plane 
ni + -it7 

( d )  <-plane 

T D "' S"' 

71 

(e) 2-plane 

Im Z 

+lc 

a - 1  O t l  S 

C"" 

D"' S" E" A * Re2 
I7 P A 

FIGURE 5. Complex planes for the case c > c*. 
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h = l  
C U m 2, A P 

1.3130 0.4412 1 2 0.9089 0 
1.5875 0.7303 1.4304 1.8155 0.8170 0.6000 
1.7231 0.8668 1.8615 1.7640 0.7921 0.7000 
1.8506 0.9925 3.6318 1.7265 0.7750 0.7700 
1.8541 0.9962 4.1162 1.7259 0.7743 0.7720 
1.8562 0.9982 4.6118 1.7254 0.7741 0.7730 

h =  10 

1.6788 0.6084 1 1.3728 1.2639 0 
2.4104 1.1706 1.3733 1.2554 1.1549 0.6000 
3.6502 2.0995 2.0522 1.1897 1.0942 0.8000 

10.366 7.0702 8.3508 1.1252 1.0350 1 .oooo 
12.998 9.0140 15.281 1.1190 1.0293 1.0200 
13.888 9.6709 22.265 1.1175 1.0279 1.0250 

TABLE 4. Values of m and z, for c > c* for two channels of finite widths h = 1,lO 

The position of the stagnation point is then determined by 

where 

In  table 4 we present numerical values of c ,  m and z, obtained from (5.1)-(5.6), for 
two fixed values of h. Results for an open channel are obtained by letting p+h.  In 
this limit we find that the slot width condition (5.3b) becomes 

cosh2 A 
2 sinh2 h - cosh h 

coshc = (5.7) 

while (4.12a, b )  remain valid and the position of the stagnation point is 

2, = I-%( sin-'(tanh a)+-cosh-l(;+sechA)-- 2 csinhh- c O s ~ ~ -  ') tanh a) . 

Since v must lie between 0 and A ,  it  follows from (5.7) that 
(5.8) 

Y 1 
RC C 

$(2/5+1) c coshh < 2. 

The limit cosh h + 2 corresponds to the stagnation point on the trailing corner, while 
the limit cosh h -+ 3 4 5  + 1) corresponds to the stagnation point a t  x = co and c + 00. 
Thus as c+ 00 we find that 

m 
2, - -+ 1 +O( l / c ) .  

R 
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6. Conclusion 
We have presented results for the mass flow into the slot for the entire range of 

relevant stagnation region pressures c2 - 1 .  For our model, which assumes smooth 
separation at  the leading slot edge, the velocity at the slot trailing edge is 
unbounded, except at one special value c = c*. When c > c* the stagnation point is 
on the channel wall, downstream of the slot, and moves monotonically to  infinity 
with increasing c .  If c < c* the stagnation point is located on the slot downstream 
wall and it might be expected that, as in the case of the flow without a separation, 
the stagnation point moves to infinity as the mass flow rate tends to zero. This is 
found not to be so ; the influence of the separation is to prevent the stagnation point 
from moving further than about 0.05 slot widths into the slot. Preliminary 
experimental work supports these predictions and we hope to publish the results of 
this experimental investigation in a subsequent paper. 
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